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Abstract

The finite difference method in conjunction with the least-squares scheme and the experimental temperature data is proposed to pre-
dict the average natural-convection heat transfer coefficient and the fin efficiency on a vertical square fin of one-circular tube plate finned-
tube heat exchangers. In the present study, the radiation and convection heat transfer coefficients are simultaneously taken into consid-
eration. The heat transfer coefficient on this square fin is very non-uniform. Thus the whole plate fin is divided into several sub-fin regions
in order to predict the average heat transfer coefficient �h and the fin efficiency on the fin from the knowledge of the fin temperature
recordings at several selected measurement locations. The results show that the heat transfer coefficient on the bottom fin region of
the tube can be markedly higher than that on the top fin region of the tube. The �h value increases with the fin spacing S and approaches
an asymptotical value obtained from a single square fin as S!1. The fin temperature distributions depart from the ideal isothermal
situation and the fin temperature decreases more rapidly away from the circular center with increasing the fin spacing. In order to show
the accuracy of the present inverse scheme, a comparison of the average heat transfer coefficient on the fin between the present predicated
results and those obtained from the correlation recommended by current textbooks is made.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The fins in heat exchangers are always applied to
increase the heat flow per unit of basic surface. The analysis
of a continuous plate fin pierced by a regularly spaced
array of circular tubes in staggered and in-line arrays has
many engineering applications [1]. In order to simplify
the problem considered, the calculation of the standard
fin efficiency usually assumes that the heat transfer coeffi-
cient is constant over the plate fin. However, it is well
known that there exists a very complex flow pattern within
a plate finned-tube heat exchanger due to a plume of the
heated air rising above the horizontal circular tube in nat-
ural convection. The boundary layer over a horizontal hot
tube starts to develop at the bottom of the tube and
increases in thickness along the circumference. The flow
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forms a low-velocity region above the tube. Thus the heat
transfer coefficient is highest on the bottom region of the
tube and is lowest on the top region of the tube. This causes
local variations of the heat transfer coefficient on the fin.
On the other hand, the heat transfer coefficient on the fin
is very non-uniform. This implies that the actual steady-
state heat transfer coefficient on the fin inside a plate
finned-tube heat exchanger should be the function of posi-
tion. As shown in Ref. [2], the measurements of the local
heat transfer coefficient on plain fins under steady-state
heat transfer conditions are very difficult to perform, since
the local fin temperature and local heat flux are required.
Thus the estimation of a more accurate heat transfer coef-
ficient on the fin is an important task for the device of the
high-performance heat exchangers.

Quantitative studies of the heat transfer processes occur-
ring in the industrial applications require accurate knowl-
edge of the surface conditions and the thermal physical
quantities of the material. It is well known that these
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Nomenclature

Af area of the whole plate fin, m2

Aj area of the jth sub-fin region, m2

[A] global conduction matrix
do outer diameter of a tube, m
[F] force matrix
h local heat transfer coefficient, W/m2 K
�h unknown average heat transfer coefficient on the

whole plate fin, W/m2 K
�hj unknown average heat transfer coefficient on the

jth sub-fin region, W/m2 K
k thermal conductivity of the fin, W/m K
kair thermal conductivity of the air, W/m K
L side length of a square fin, m
‘ distance between two neighboring nodes in the

x- and y-directions
m dimensionless parameter defined in Eq. (5)
�mj unknown dimensionless parameter on the jth

sub-fin region defined in Eq. (10)
N number of sub-fin regions
Nus Nusselt number defined in Eq. (37)
Nx number of nodes in the x-direction
Ny number of nodes in the y-direction
Q total heat rate dissipated from the whole plate

fin, W
qj heat rate dissipated from the jth sub-fin region,

W

Ras Rayleigh number defined in Eq. (36)
ro outer radius of the circular tube, m
S fin spacing, m
S1 outer boundary surface of the circular tube
T fin temperature, K
Tj temperature measurement on the jth sub-fin

region, K
To outer surface temperature of the circular tube, K
T1 ambient temperature, K
X, Y spatial coordinates, m
x, y dimensionless spatial coordinates

Greek symbols

a thermal diffusivity of the air, m2/s
b volumetric thermal expansion coefficient, 1/K
d fin thickness, m
gf fin efficiency
m kinematic viscosity of the air, m2/s
h temperature difference, T � T1
[h] global temperature matrix

Superscripts

cal calculated value
mea measured data
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physical quantities and the surface conditions can be pre-
dicted using the temperature measurements inside the
material. Such problems are called the inverse heat conduc-
tion problems and have become an interesting subject
recently. To date, various inverse methods in conjunction
with the measured temperatures inside the test material
have been developed for the analysis of the inverse heat
conduction problems [3,4]. However, to the authors’
knowledge, a few investigators performed the prediction
of the local heat transfer coefficients on a fin inside the
plate finned-tube heat exchangers.

Lin et al. [5] used the finite difference method in conjunc-
tion with the linear least-squares scheme to estimate the
space-variable heat transfer coefficient on a heated cylinder
normal to the laminar and turbulent air streams. Owing to
the requirement of the local fin temperature measurements,
the estimations of the local heat transfer coefficients on the
plate fin under steady-state heat transfer conditions are
generally more difficult than those on the boundary surface
of a physical geometry, as shown in Ref. [5]. Thus a few
researchers predicted the distribution of the local heat
transfer coefficients on a plate fin [6–11]. Jones and Russell
[6] applied the transient technique to determine the local
heat transfer coefficients on the rectangular fin pierced by
an elliptical steel tube and then the finite element method
was used to calculate its fin efficiency. Saboya and Sparrow
[7] and Rosman et al. [8] cast solid naphthalene plates in
the form of a plate-fin-and-tube flow passage and used
mass transfer techniques to infer the local heat transfer
coefficients from the heat-mass transfer analogy. The local
mass transfer coefficients were defined by measuring the
thickness of naphthalene lost by sublimation during a
timed test run. Recently, Ay et al. [9] performed an exper-
imental study with the infrared thermovision to monitor
the temperature distribution on a plate-fin surface inside
the plate finned-tube heat exchangers, and then the local
heat transfer coefficients on the test fin can be determined
using the obtained experimental temperature measure-
ments. Huang et al. [10] applied the steepest descent
method and a general purpose commercial code CFX4.4
to estimate the local heat transfer coefficients for the plate
finned-tube heat exchangers based on the simulated mea-
sured temperature distribution on the fin surface by infra-
red thermography. However, the difference of the local
heat transfer coefficients in the wake and frontal regions
of the tube and the fin efficiency on the fin inside the plate
finned-tube heat exchangers are not shown in the works of
Ay et al. [9] and Huang et al. [10]. Sometimes, it is may be
difficult to measure the temperature distributions on the fin
of plate finned-tube heat exchangers using the infrared
thermography and the thermocouples for some practical
heat transfer problems. Recently, Chen et al. [11] applied
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Fig. 2. Schematic diagram of one-tube plate fin heat exchangers with the
fin spacing.

Fig. 3. Physical geometry of two-dimensional plate fin with a circular
tube.
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the finite difference method in conjunction with the least-
squares scheme and the experimental temperature data to
predict the fin efficiency and the average heat transfer coef-
ficient on the fin inside one-tube plate finned-tube heat
exchangers for various air speeds. The present study will
apply the similar method proposed by Chen et al. [11] to
estimate the fin efficiency and the average heat transfer
coefficient on the fin inside one-tube plate finned-tube heat
exchangers in natural convection. The present estimated
results of the average natural-convection heat transfer coef-
ficient on the fin will compare with those obtained from the
correlation recommended by current textbooks.

The inverse analysis of the present study is that the
whole fin area is divided into several analysis sub-fin
regions and then the fin temperatures at these selected
measurement locations are measured using T-type thermo-
couples. Afterwards, the finite difference method in con-
junction with these temperature measurements and the
least-squares method is applied to predict the average heat
transfer coefficients on these sub-fin regions. Furthermore,
the average heat transfer coefficient on the whole plate fin �h
and the fin efficiency can be obtained for various values of
the fin spacing under the given conditions of the ambient
temperature and the tube temperature.

The advantage of the present study is that the governing
differential equations for the airflow do not need to be
solved. In this study, the effect of the fin spacing on the esti-
mation of the �h value will be investigated. The computa-
tional procedure for the estimates of the heat transfer
coefficients on each sub-fin region is performed repeatedly
until the sum of the squares of the deviations between the
calculated and measured temperatures becomes minimum.

2. Mathematical formulation

The experimental apparatus configuration of the present
study is shown in Fig. 1. The schematic diagram of one-
tube plate fin heat exchanger in natural convection is
shown in Fig. 2. Fig. 3 shows the physical model of the
two-dimensional thin plate fin inside one-tube plate fin heat
exchanger, where ro, L and d denote the outer radius of the
Fig. 1. Experimental apparatus for the temperature measur
circular tube, the side length of the square plate fin and the
fin thickness, respectively. The circular center is located at
ements of a vertical fin of finned-tube heat exchangers.



H.-T. Chen, J.-C. Chou / International Journal of Heat and Mass Transfer 49 (2006) 3034–3044 3037
(L/2,L/2). To and T1 respectively denote the outer surface
temperature of the circular tube and the ambient tempera-
ture. Owing to the thin fin behavior, the temperature gradi-
ent in the z-direction (the fin thickness) is small and the fin
temperature varies only in the X- and Y-directions. The
‘‘insulated tip’’ assumption can be an adequate approxima-
tion provided that the actual heat flux dissipated through
the tip is much smaller than the total heat flux drawn
from the base wall [12]. The heat transfer coefficient
h(X,Y) in the present study is assumed to be non-uniform.
This heat transfer coefficient on the fin inside a plate
finned-tube heat exchanger can be estimated provided that
the fin temperatures at various measurement locations can
be measured. Under the assumptions of the steady-state
heat transfer conditions and constant thermal properties,
the two-dimensional heat conduction equation for the con-
tinuous thin fin inside one-tube plate finned-tube heat
exchanger can be expressed as

o2T

oX 2
þ o2T

oY 2
¼ 2hðX ; Y Þ

kd
ðT � T1Þ ð1Þ

Its corresponding boundary conditions are

oT
oX
¼ 0 at X ¼ 0 and X ¼ L ð2Þ

oT
oY
¼ 0 at Y ¼ 0 and Y ¼ L ð3Þ

T ¼ T o ðX ; Y Þ on S1 ð4Þ

where T is the fin temperature. X and Y are Cartesian coor-
dinates. S1 denotes the boundary of the circular tube with
radius ro Æ k is the thermal conductivity of the fin.

For convenience of the inverse analysis, the following
dimensionless parameters are introduced as

x ¼ X=L; y ¼ Y =L and mðx; yÞ ¼ 2L2hðx; yÞ
kd

ð5Þ

Substitution of Eq. (5) into Eqs. (1)–(4) gives the follow-
ing equations.

o
2h

ox2
þ o

2h
oy2
¼ mðx; yÞh ð6Þ

oh
ox
¼ 0 at x ¼ 0 and x ¼ 1 ð7Þ

oh
oy
¼ 0 at y ¼ 0 and y ¼ 1 ð8Þ

and

h ¼ h0 ðx; yÞ on S1 ð9Þ
where h = T � T1.

3. Numerical analysis

In the present study, the whole plate fin is divided into N

sub-fin regions. The heat transfer coefficient on each sub-
fin region is assumed to be constant. Thus the application
of the finite difference method to Eq. (6) can produce the
following difference equation on the kth sub-fin region
as

hiþ1;j � 2hi;j þ hi�1;j

‘2
þ hi;jþ1 � 2hi;j þ hi;j�1

‘2
¼ �mkhi;j

for k ¼ 1; 2; . . . ;N ð10Þ

where ‘ is the distance between two neighboring nodes in
the x- and y-directions and is defined as ‘ = 1/(Nx � 1) =
1/(Ny � 1). Nx and Ny are the nodal numbers in x- and
y-directions, respectively. �mk denotes the unknown dimen-
sionless parameter on the kth sub-fin region and is defined
as �mk ¼ 2L2�hk=ðkdÞ. �hk denotes the average heat transfer
coefficient on the kth sub-fin region.

The application of the central difference approximation
to the boundary conditions (7) and (8) can yield their
approximate forms as

h2;j ¼ h0;j and hNx�1;j ¼ hNxþ1;j for j ¼ 1; 2; . . . ;Ny

ð11Þ
hi;2 ¼ hi;0 and hi;Ny�1 ¼ hi;Nyþ1 for i ¼ 1; 2; . . . ;Nx

ð12Þ

Substitution of Eqs. (11) and (12) into their corresponding
difference equations can obtain the difference equations at
the boundary surfaces as

2h2;j � 2h1;j

‘2
þ h1;jþ1 � 2h1;j þ h1;j�1

‘2
¼ �mkh1;j

for k ¼ 1; 4; 6 ð13Þ

�2hNx;j þ 2hNx�1;j

‘2
þ hNx;jþ1 � 2hNx;j þ hNx;j�1

‘2
¼ �mkhNx;j

for k ¼ 3; 5; 8 ð14Þ

hiþ1;1 � 2hi;1 þ hi�1;1

‘2
þ 2hi;2 � 2hi;1

‘2
¼ �mkhi;1 for k ¼ 6; 7; 8

ð15Þ

and

hiþ1;Ny � 2hi;Ny þ hi�1;Ny

‘2
þ
�2hi;Ny þ 2hi;Ny�1

‘2
¼ �mkhi;Ny

for k ¼ 1; 2; 3 ð16Þ

It can be found from Refs. [13,14] that the boundary of
the circular tube may be approximated by an octagon in
terms of a Cartesian coordinate system. Thus a more accu-
rate modified difference equation based on this technique
will be constructed in the present study.

The difference equations for the nodes at the interface
of two neighboring sub-fin regions, as shown in Fig. 4,
can be expressed as

hiþ1;j � 2hi;j þ hi�1;j

‘2
þ hi;jþ1 � 2hi;j þ hi;j�1

‘2
¼ �mk þ �mk�

2
hi;j

ð17Þ



Fig. 4. Nodes for the interface of two-neighboring sub-fin areas.
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Rearrangement of Eq. (10) and Eqs. (13)–(17) in con-
junction with the difference equations in the neighboring
of the circular tube can yield the following matrix equation.

½A�½h� ¼ ½F � ð18Þ
where [A] is a global conduction matrix. [h] is a matrix rep-
resenting the nodal temperatures. [F] is a force matrix. The
nodal temperatures can be obtained from Eq. (18) by using
the Gauss elimination method.

However, it is may be difficult to measure the tempera-
ture distribution on the whole plate fin using the infrared
thermography and the thermocouples for some practical
heat transfer problems. Relatively, the unknown heat
transfer coefficient h(x,y) on a fin is not easy to be
obtained. Under this circumstance, the whole plate fin con-
sidered can be divided into several sub-fin regions in the
present inverse scheme and then the unknown heat transfer
coefficient on each sub-fin region can be approximated by a
constant value. Under this assumption, the heat rate dissi-
pated from this sub-fin region qj is

qj ¼ 2�hj

Z
Aj

ðT � T1ÞdA for j ¼ 1; 2; . . . ;N ð19Þ

The average heat transfer coefficient on the whole plate fin
�h can be expressed as

�h ¼
XN

j¼1

�hjAj=Af ð20Þ

where N is the total number of the sub-fin regions. Af is the
area of the whole plate fin.

The efficiency of the continuous plate fin gf is defined as
the ratio of the actual heat transfer from the continuous
plate fin to the dissipated heat from the fin maintained at
the tube temperature To. Thus the fin efficiency gf can be
expressed as

gf ¼
PN

j¼1qj

2AfðT o � T1Þ�h
ð21Þ

The total heat rate dissipated from the whole plate fin to
the ambient Q can be written as

Q ¼
XN

j¼1

qj ð22Þ

In order to estimate the unknown heat transfer coeffi-
cient on the jth sub-fin region �hj, the additional informa-
tion of the steady-state temperature measurements at N

interior measurement locations is required. The more a
number of the sub-fin regions are, the more accurate the
estimation of the unknown average heat transfer coefficient
on the whole plate fin is. Relatively, a more computational
time can be required. In the present study, T-type thermo-
couples are used to record the temperature information at
selected measurement locations. The temperature measure-
ment taken from the jth thermocouple is denoted by
T mea

j ðj ¼ 1; . . . ;NÞ, as shown in Table 1.
The least-squares minimization technique is applied to

minimize the sum of the squares of the deviations between
the calculated temperatures and the temperature measure-
ments at selected measurement locations. The error in
the estimates Eð�m1; �m2; . . . ; �mN Þ will be minimized. Eð�m1;
�m2; . . . ; �mNÞ is defined as

Eð�m1; �m2; . . . ; �mNÞ ¼
XN

j¼1

½hcal
j � hmea

j �
2 ð23Þ

where the unknown average heat transfer coefficient on
each sub-fin region hi, i = 1,2, . . . ,N, can be obtained from
the definition of �mi. The calculated temperature taken from the
jth thermocouple location, hcal

j , is taken from Eq. (18). The
temperature hmea

j is defined as hmea
j ¼ T mea

j � T1.
The estimated values of �mi; i ¼ 1; 2; . . . ;N , are deter-

mined until the value of Eð�m1; �m2; . . . ; �mN Þ is minimum.
The computational procedures for estimating the �mi value,
i = 1,2, . . . ,N, are described as follows.

First, the initial guesses of �mi, i = 1,2, . . . ,N, are arbi-
trarily chosen. Accordingly, the calculated temperature
hcal

j can be determined. Deviation of hmea
j and hcal

j , ej, is
expressed as

ej ¼ hcal
j � hmea

j for j ¼ 1; 2; . . . ;N ð24Þ

The new calculated temperature hcal;n
j can be expanded in

a first-order Taylor series as

hcal;n
j ¼ hcal

j þ
XN

i¼1

ohcal
j

o�mi
d �mi for j ¼ 1; 2; . . . ;N ð25Þ

In order to obtain the
ohcal

j

o�mi
value, the new estimated value �m�i

is introduced and is expressed as

�m�i ¼ �mi þ didik for i; k ¼ 1; 2; . . . ;N ð26Þ



Table 1
Temperature measurements and the present estimates for various T0, T1 and S values

S = 0.005 m S = 0.01 m S = 0.02 m S!1
T0 = 343.029 K, T1 = 303 K T0 = 342.585 K, T1 = 301 K T0 = 340.692 K, T1 = 299 K T0 = 345.49 K, T1 = 299 K

T mea
j ðKÞ T mea

1 ¼ 323:238 T mea
1 ¼ 319:02 T mea

1 ¼ 313:172 T mea
1 ¼ 313:576

T mea
2 ¼ 330:78 T mea

2 ¼ 327:546 T mea
2 ¼ 321:234 T mea

2 ¼ 323:424
T mea

3 ¼ 325:309 T mea
3 ¼ 318:705 T mea

3 ¼ 313:872 T mea
3 ¼ 313:125

T mea
4 ¼ 321:401 T mea

4 ¼ 317:608 T mea
4 ¼ 312:941 T mea

4 ¼ 314:055
T mea

5 ¼ 323:024 T mea
5 ¼ 316:309 T mea

5 ¼ 312:815 T mea
5 ¼ 312:256

T mea
6 ¼ 315:276 T mea

6 ¼ 311:04 T mea
6 ¼ 307:083 T mea

6 ¼ 308:817
T mea

7 ¼ 317:771 T mea
7 ¼ 314:549 T mea

7 ¼ 309:255 T mea
7 ¼ 311:032

T mea
8 ¼ 314:194 T mea

8 ¼ 309:95 T mea
8 ¼ 305:979 T mea

8 ¼ 306:703

�hj ðW=m2 KÞ �h1 ¼ 3:341 �h1 ¼ 4:763 �h1 ¼ 6:500 �h1 ¼ 8:135
�h2 ¼ 0:919 �h2 ¼ 0:252 �h2 ¼ 4:540 �h2 ¼ 2:940
�h3 ¼ 2:242 �h3 ¼ 4:471 �h3 ¼ 5:379 �h3 ¼ 7:815
�h4 ¼ 15:213 �h4 ¼ 19:154 �h4 ¼ 25:267 �h4 ¼ 27:149
�h5 ¼ 11:094 �h5 ¼ 22:958 �h5 ¼ 25:306 �h5 ¼ 33:459
�h6 ¼ 7:210 �h6 ¼ 10:492 �h6 ¼ 10:997 �h6 ¼ 8:808
�h7 ¼ 20:915 �h7 ¼ 23:832 �h7 ¼ 39:110 �h7 ¼ 36:189
�h8 ¼ 10:755 �h8 ¼ 12:546 �h8 ¼ 15:252 �h8 ¼ 13:958

qj (W) q1 = 0.182 q1 = 0.234 q1 = 0.256 q1 = 0.308
q2 = 0.054 q2 = 0.014 q2 = 0.216 q2 = 0.224
q3 = 0.132 q3 = 0.214 q3 = 0.220 q3 = 0.300
q4 = 0.618 q4 = 0.726 q4 = 0.842 q4 = 1.014
q5 = 0.678 q5 = 0.824 q5 = 0.838 q5 = 1.134
q6 = 0.248 q6 = 0.304 q6 = 0.260 q6 = 0.248
q7 = 0.724 q7 = 0.768 q7 = 1.034 q7 = 1.102
q8 = 0.346 q8 = 0.330 q8 = 0.322 q8 = 0.322

�h ðW=m2 KÞ 8.562 11.708 15.648 16.273
Q (W) 2.782 3.416 3.988 4.586
g 0.440 0.380 0.331 0.328
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where di ¼ �m�i � �mi denotes the correction. The symbol djk

is Kronecker delta.
Accordingly, the new calculated temperature hcal;n

j with
respect to �m�i can be determined from Eq. (18). Deviation
of hcal;n

j and hmea
j ; en

j , can be defined as

en
j ¼ hcal;n

j � hmea
j for j ¼ 1; 2; . . . ;N ð27Þ

The finite difference representation of the derivative
ohcal

j

o�mi

can be expressed as

xi
j ¼

ohcal
j

o�mi
¼

hcal;n
j � hcal

j

�m�i � �mi
for j ¼ 1; 2; . . . ;N ð28Þ

Substitution of Eqs. (24), (26) and (27) into Eq. (28) can
yield

xi
j ¼

en
j � ej

di
for j ¼ 1; 2; . . . ;N ð29Þ

Substitution of Eq. (28) into Eq. (25) can obtain the new
expression of hcal;n

j as

hcal;n
j ¼ hcal

j þ
XN

i¼1

xi
jd
�
i for j ¼ 1; 2; . . . ;N ð30Þ

where d�i ¼ d �mi denotes the new correction for the values of
�mi.

Substituting Eqs. (24) and (27) into Eq. (30) gives

en
j ¼ ej þ

XN

i¼1

xi
jd
�
i for j ¼ 1; 2; . . . ;N ð31Þ
As shown in Eq. (23), the error in the estimates
Eð�m1 þ D�m1; �m2 þ D�m2; . . . ; �mN þ D�mN Þ can be expressed as

E ¼
XN

j¼1

ðen
j Þ

2 ð32Þ

In order to yield the minimum value of E with respect to
the �mi values, differentiating E with respect to the new cor-
rection d�i will be performed. Thus the correction equations
for the �mi values can be expressed as

XN

j¼1

XN

k¼1

xi
kx

j
kd�j ¼ �

XN

j¼1

xi
jej i ¼ 1; 2; . . . ;N ð33Þ

Eq. (33) is a set of N algebraic equations for the new cor-
rections. The new correction d�i can be obtained by solving
Eq. (33). Furthermore, the new estimated heat transfer
coefficients can also be determined. The above procedures

are repeated until the values of
hmea

j �hcal
j

hmea
j

��� ���, j = 1,2, . . . ,N,
are all less than 10�4.

4. Experimental apparatus

The schematic diagram of the experimental apparatus
used in the present study for the estimation of the natu-
ral-convection heat transfer coefficient on a square plate
fin inside one-tube plate finned-tube heat exchangers is
shown in Fig. 1. This experiment is conducted in an open
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box, as shown in Fig. 1. This box with 550 mm in length,
450 mm in width and 300 mm in height is made of
acrylic–plastic sheets. The horizontal circular tube with
an outer diameter of 27.3 mm and 2 mm in thickness and
the test square fin with 100 mm in length, 100 mm in width
and 1 mm in thickness are made of AISI 304 stainless mate-
rial. It can be found from Ref. [15] that the thermal con-
ductivity of AISI 304 stainless material is 14.9 W/m K.
The horizontal circular tube is placed on two wood sup-
porters, which is 98 mm above an experimental table to
prevent ground effects. The test fins are vertically mounted
on this circular tube, as shown in Figs. 1 and 2. The ambi-
ent temperature and the test fin temperature are measured
by using T-type thermocouples. A cylindrical rod with an
outer diameter of 20 mm and 100 mm in length bound by
a single thermofoil heater with an outer diameter of
1.5 mm is inserted in the circular tube and then the tube
will be heated. Thus the radial gap between the surround-
ing circular tube and the whole electrical heating rod is
small. On the other hand, the whole electrical heating rod
is nearly fitted to the surrounding circular tube. Two hun-
dred watts power input was supplied the heater. The elec-
trical heating rod was heated about 2 h. However, the
steady-state condition has reached about 2000 s. The read-
ings of all the thermocouples used to measure the ambient
air and the fin are recorded from t = 0 until the steady-state
condition has reached. All the data signals were collected
and converted by a data acquisition system (National
Instruments NI SCXI-1000, 1102, 1300). The data acquisi-
tion system then transmitted the converted signals through
a GPIB interface to a personal computer in conjunction
with a Labview software for further operation. The accu-
racy of the thermocouple is ±0.4%. The histories of the
temperature measurements for all the thermocouples are
obtained by a curve-fitted scheme. The experiment will be
repeatedly made provided that one of the temperature mea-
surements for all the thermocouples is not very accurate. In
order to check the accuracy of the temperature measure-
ments, the experiments are at least repeated two times. In
order to minimize the effect of the thermal contact resis-
tance between the fin and the circular tube on the estimates,
the gap between the fin and the circular tube is filled with a
satlon cyanoacrylate adhesive. In addition, four thermo-
couples placed in the interface between the fin and the
circular tube are fixed at four different positions of the fin
base, TC9, TC10, TC11 and TC12 shown in Fig. 3, by
using a satlon cyanoacrylate adhesive. The fin base temper-
atures are measured from these four thermocouples. There
exists a plume of the heated air rising above the horizontal
circular tube in the present problem. The boundary layer
over a horizontal heated tube starts to develop at the bot-
tom of the tube and increases in thickness along its circum-
ference. Thus the flow forms a low-velocity region above
the tube. This implies that the fin base temperatures at
the positions of TC10 and T12, respectively are the highest
temperature and the lowest temperature for these four tem-
perature measurements. These four temperature measure-
ments do not deviate much from each other. Thus the
average of these four temperature measurements is taken
as the fin base temperature and is also assumed to be the
outer surface temperature of the circular tube T0 in
the present study. It can be observed from Table 1 that
the fin temperatures on the top fin region of the tube are
also markedly greater than those on the bottom fin region
of the tube for various T0, T1 and S values. The ambient
temperature T1 is installed at 100 mm away from the test
specimen. For the present problem, the flow and thermal
fields in the previous works were often assumed to be sym-
metric. In order to investigate the reliability of the above
assumption, the regular arrangements of the thermocou-
ples welded on the fin are chosen. Thus the whole plate
fin is divided into eight regions, i.e., N = 8. Regions 1–3
are the top area of the tube. Regions 6–8 are the bottom
area of the tube. In order to estimate the average heat
transfer coefficient on each sub-fin region, eight T-type
thermocouples are welded at the suitable positions of the
sub-fin region, as shown in Fig. 3. Eight T-type thermocou-
ples for the measurements of the fin temperature are
respectively welded at (2/11, 9/11), (1/2, 9/11), (9/11, 9/11),
(2/11,1/2), (9/11, 1/2), (2/11, 2/11), (1/2,2/11) and (9/11,
2/11). It can be observed that the first, third, fourth, fifth,
sixth and eighth thermocouples are symmetric with respect
to y = 1/2. The diameter of the spot sizes of eight thermo-
couples is about 0.13 mm.

5. Results and discussion

It can be observed from Ref. [12] that the ‘‘insulated tip’’
assumption is a good approximation when the actual heat
flux passed through the tip is negligible relative to the total
heat flux drawn from the base wall. For simplicity, the
average heat transfer coefficient on the tip surface can be
assumed to be the same as that on the lateral surfaces of
the fin. On the other hand, the ‘‘insulated tip’’ assumption
will be reasonable provided that the surface area of the fin
tip is very smaller than the total fin surface area. Their ratio
for the present study can be written as 4dL

ðL2�pr2
0
Þþ4dL

. Based on

the experiment data given in the present study, the surface
area of the fin tip is only 4.07% of the total fin surface area.
This implies that the heat flux passed through the fin
tip can be neglected in the present study. Thus Eqs. (2)
and (3) in the present study should be the reasonable
assumptions. The values of T mea

1 ð2=11; 9=11Þ; T mea
2 ð1=2;

9=11Þ; T mea
3 ð9=11; 9=11Þ; T mea

4 ð2=11; 1=2Þ; T mea
5 ð9=11; 1=2Þ;

T mea
6 ð2=11; 2=11Þ; T mea

7 ð1=2; 2=11Þ and T mea
8 ð9=11; 2=11Þ,

respectively denote T mea
1 ; T mea

2 ; T mea
3 ; T mea

4 ; T mea
5 ; T mea

6 ; T mea
7

and T mea
8 . It is obvious that eight thermocouples are

installed at symmetric positions with respect to the center
of the square plate fin. The temperature measurements
T mea

1 ; T mea
2 ; T mea

3 ; T mea
4 ; T mea

5 ; T mea
6 ; T mea

7 and T mea
8 for vari-

ous T0, T1 and S values are shown in Table 1. Table 1 also
shows the effect of the fin spacing S on the average heat
transfer coefficient on the jth sub-fin region �hj, heat rate
on the jth sub-fin region qj, total heat rate on the whole
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plate fin Q, average heat transfer coefficient on the whole
plate fin �h and fin efficiency gf. It is obvious that Table 1
shows T mea

1 6¼ T mea
3 ; T mea

4 6¼ T mea
5 and T mea

6 6¼ T mea
8 . This

phenomenon can result from the following reasons that
the flow pattern of the present problem around the tube
may become random in motion, and the test specimen
cannot be horizontally positioned. Thus the symmetric
assumptions of the flow and thermal fields cannot be very
reasonable for the present real problem. Table 1 shows the
heat transfer coefficient is highest on the bottom region of
the tube and is lowest on the top region of the tube. It can
be found from the textbook of Çengel [16] that the local
Nusselt number is highest at the bottom of the tube and
is lowest at the top of the tube. Obviously, the present esti-
mates of �hj agree with this tendency. These results show
that there exists a low-performance region on the top fin
region of the tube, and the heat transfer coefficient on the
fin is non-uniform. This also implies that the assumption
of the constant heat transfer coefficient is not always rea-
sonable for the present problem. The actual steady-state
heat transfer coefficient on a fin inside a plate finned-tube
heat exchanger should be the function of position. There-
fore, in order to enhance the overall heat transfer, it is
worth to find a way to increase heat transfer in the region
2. This may lead to design a heat exchanger with a high
heat transfer performance. The ratio of the average heat
transfer coefficient on the bottom fin region �h7 to that on
the top fin region �h2 can be up to about 20 times for
S = 0.005 m and is about 8.5 times for S = 0.02 m. This
ratio can be decreased with increasing the fin spacing.
The �h value for S = 0.02 m is approximately 180% greater
than that for S = 0.005 m. However, the Q value for S =
0.02 m is up to 43% greater than that for S = 0.005 m.
Thus the effect of the fin spacing on �h and Q is not negli-
gent. It can be found from Table 1 that the heat rate on
the top fin region of one-tube finned-tube heat exchanger
in the range of S P 0.005 m is responsible for 2–5% of
the total heat rate on the whole plate fin. The fin efficiency
gf in the range of S P 0.005 m decreases with increasing the
S value. The gf value decreases from 44% to 33%.

A resistance to the natural convective airflow in the fin
arrays increases with decreasing the fin spacing for the
present problem. This resistance can gradually decrease
with increasing the fin spacing S and has a negligible effect
on the average heat transfer coefficient for the fin spacing
above a certain value. Thus the average heat transfer coef-
ficient �h increases with the fin spacing and approaches an
asymptotical value obtained from a single square fin as
S ! 1. These results are shown in Fig. 5. The similar phe-
nomenon can also be found from Ref. [17]. Figs. 6 and 7,
respectively show the effect of the Rayleigh number Ras

on the Nusselt number Nus and the fin efficiency gf.
The smoothing curves can be applied to match the data
points of Nus � Ra1=4

s and gf � Ra1=4
s . The correlations of

Nus � Ra1=4
s and gf � Ra1=4

s can be obtained by using the
least-square fitting method of experimental data and are
expressed as
gf ¼ 0:546� 0:057� ðRa1=4
s Þ

2 � 0:0001� ðRa1=4
s Þ

3 ð34Þ
and

Nus ¼ 1:608þ 2:4� Ra1=4
s ð35Þ

where the Raleigh number Ras and the Nusselt number Nus

are defined as

Ras ¼
gbðT 0 � T1ÞS3

ma
S
L

� �
ð36Þ
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and

Nus ¼
�hS
kair

ð37Þ

In Eqs. (36) and (37), kair denotes the thermal conductivity
of the air. The properties b, a and m, respectively denote the
expansion coefficient, thermal diffusivity and kinematic vis-
cosity of the air. Thus the Ras value ranges about from 22
to 1 in this study.

It can be found from the textbook of Kreith and Bohn
[15] and Raithby and Hollands [19] that the empirical rela-
tion of Nus and Ras in the range 0.2 < Ras < 4 · 104 for a
square isothermal fin without the tube can be expressed as

�hS
kair

¼ QS
2AfðT 0 � T1Þkair

¼ Ra0:89
s

18

� �2:7

þ ð0:62Ra0:25
s Þ

2:7

" #1=2:7

ð38Þ
Table 2
Comparison of the heat transfer coefficient for various S and Ras values

S (m) Ras
�h ðW=m2 KÞ
Present estimates

0.005 22.169 8.562
0.008 161.589 9.939
0.01 381.38 11.708
0.013 1077.85 13.410
0.015 1799.8 14.253
0.018 4144.11 15.015
0.02 6110.96 15.648
0.025 18339.5 15.844
where properties are evaluated at the ambient temperature
T1.

The empirical relation of Nus and Ras in the range
1.67 < n = D/d0 <1 for an annular circular isothermal
fin can be expressed as [15,19]

Nus ¼
Ras;c

12p
½2� expð�C�Þ � expð�b�C�Þ� ð39Þ

where D is the outer diameter of the annular circular fin.
All the properties are evaluated at the tube temperature
T0. C*, b* and Ras,c are defined as

b� ¼ ð0:17=nÞ þ expð�4:8=nÞ ð40Þ

C� ¼ 23:7� 1:1½1þ ð152=n2Þ�1=2

1þ b�
1

Ra3=4
s;c

ð41Þ

and

Ras;c ¼
gbðT 0 � T1ÞS3

ma
S
D

� �
ð42Þ

It can also be found from the textbook of Kreith and
Bohn [15] and Raithby and Hollands [19] that the Nusselt
number relations from the lateral surfaces of the circular
and square fins are equivalent if D = 1.23L.

It is known that heat is transferred to the surroundings
by natural convection and radiation. On the other hand,
the radiation heat transfer may be quite significant in nat-
ural convection [18]. However, the natural-convection heat
loss can decrease more rapidly than the radiation heat loss
with decreasing the fin spacing. It can be observed from
Table 2 that the present estimates of �h are higher than
the empirical values obtained from Eq. (39) with D =
1.23L for various S values. The above phenomena can
result from the simultaneous consideration of the convec-
tion and radiation heat transfer coefficients and the non-
isothermal situation of the fin temperature distribution in
the present study. The results shown in Table 2 and
Fig. 5 display that the asymptotical values of the �h values
obtained from the present inverse scheme and Eq. (39) with
D = 1.23L seem to approach those obtained from a single
square fin as S!1. This finding can lead to support the
methodology of the present experiments and numerical
analysis. However, the empirical values of �h obtained from
Eq. (38) are greater than the present estimates for
Eq. (38) Eq. (39) with D = 1.23L

7.892 3.212
17.398 5.033
29.156 5.391
55.997 5.547
76.399 5.591
133.157 5.792
169.787 5.817
362.948 6.155
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S P 0.008 m and are less than the present estimates for
S 6 0.005 m. In addition, the deviation of �h between the
present estimates and the empirical values obtained from
Eq. (38) seems to increase with the fin spacing or the Ras

value. This implies that Eq. (38) may be suitable for lower
Ras values. Table 2 also shows that the �h values obtained
from the present inverse scheme and Eq. (39) with
D = 1.23L range from 8.562 W/m2 K to 15.844 W/m2 K
and from 3.212 W/m2 K to 6.155 W/m2 K for S P
0.005 m, respectively. It can be found from the textbook
of Kreith and Bohn [15] that the natural-convection
heat transfer coefficient for the ambient air ranges from
6 W/m2 K to 30 W/m2 K. It is obvious that the �h values
obtained from the present inverse scheme and Eq. (39) with
D = 1.23L lie in the range from 6 W/m2 K to 30 W/m2 K.
Thus the present estimated values of �h are in good agree-
ment with the limited comparable data in Refs. [15,19]
and are obtained over a reasonably wide range of the fin
spacing. This implies that the present estimates can extend
the range of previously available data.

Once the average heat transfer coefficient on each sub-
fin region can be obtained, the temperature distribution
on the whole plate fin can also be determined from Eq.
(18). The differences between the calculated temperatures
and the measured temperatures are very small. Thus the
calculated temperatures at various measurement locations
are not shown in the revised manuscript. However, the cal-
culated temperature distributions on the whole plate fin for
various S values are shown in Figs. 8–10. It can be
observed from Figs. 8–10 that there is a considerable tem-
perature drop between the tube wall and the edge of the
plate fin owing to the poor thermal conductivity of the steel
fin. The fin temperature distributions obviously depart
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from the ideal isothermal situation, and the fin temperature
decreases more rapidly away from the circular center for
larger values of the fin spacing.

6. Conclusions

The present study proposes a numerical inverse scheme
involving the finite-difference method in conjunction with
the least-squares method and the experimental fin temper-
atures at eight measurement locations to estimate the
unknown heat transfer coefficients on eight sub-fin regions,
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the average heat transfer coefficient on the whole plate fin �h
and the fin efficiency gf in natural convection for various
T0, T1 and S values. The estimated results show that the
fin temperature distributions depart from the ideal isother-
mal situation. In addition, the fin temperature decreases
more rapidly away from the circular center when the fin
spacing increases. The average heat transfer coefficients
are very low on the top fin region of the tube. The ratio
of the average heat transfer coefficient on the bottom fin
region to that on the top fin region can be up to about
20 times under the given conditions of To and T1. The �h
value increases with the fin spacing S and approaches an
asymptotical value obtained from a single square fin as
S!1. The gf value decreases with increasing the S value.
The present estimated values of �h can be obtained over a
reasonably wide range of the fin spacing.
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